Pemodelan Tingkat Inflasi di Sumatra Menggunakan Model Gamma dan Binomial Negatif
DOI:
https://doi.org/10.58192/ebismen.v3i4.2785Keywords:
Inflasi, Generalized Linear Models, Binomial Negatif, distribusi Gamma, SumateraAbstract
This study models the inflation rate in Sumatra using Generalized Linear Models (GLM) with Gamma and Negative Binomial distributions. The data includes inflation rates, Consumer Price Index (CPI), poverty rates, and employment sectors from the 2019 BPS report. The results show that the Gamma model performs better in predicting inflation compared to the Negative Binomial model, with a lower AIC value and smaller residual deviance. The CPI variable significantly influences inflation, while other variables are not significant.
References
Amin, M., Qasim, M., Amanullah, M., & Afzal, S. (2020). Performance of some ridge estimators for the gamma regression model. Statistical Papers, 61(3), 997–1026. https://doi.org/10.1007/s00362-017-0971-z
Andersen, E. B. (1973). A goodness of fit test for the rasch model. Psychometrika, 38(1), 123–140. https://doi.org/10.1007/BF02291180
Apriyani, D., Nurdiawansyah, Khairudin, & Amna, L. S. (2023). Faktor-Faktor yang Mempengaruhi Pendapatan Asli Daerah di Daerah Sumatera. Jurnal EMT KITA, 7(4), 985–997. https://doi.org/10.35870/emt.v7i4.1562
Borror, C. M. (2008). Generalized Linear Models and Extensions, Second Edition. Journal of Quality Technology, 40(2), 241–242. https://doi.org/10.1080/00224065.2008.11917728
Daoud, J. I. (2017). Multicollinearity and Regression Analysis. Journal of Physics: Conference Series, 949, 012009. https://doi.org/10.1088/1742-6596/949/1/012009
Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer New York. https://doi.org/10.1007/978-1-4419-0118-7
Geedipally, S. R., Lord, D., & Dhavala, S. S. (2012). The negative binomial-Lindley generalized linear model: Characteristics and application using crash data. Accident Analysis & Prevention, 45, 258–265. https://doi.org/10.1016/j.aap.2011.07.012
Handayani, D. (2022). Karakterisasi Sebaran Binomial Negatif-Binomial Negatif. Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, 1(2), 94–97. https://doi.org/10.47233/jppie.v1i2.558
Janna, N. M. (2020). Variabel dan Skala Pengukuran Statistik. https://doi.org/10.31219/osf.io/8326r
Kalsum, I. A., & Faisal Fadli. (2024). PENGARUH IPM, UMP DAN INFLASI TERHADAP PENYERAPAN TENAGA KERJA (Era Bonus Demografi Pulau Jawa Tahun 2012-2021). Journal of Development Economic and Social Studies, 3(1), 44–58. https://doi.org/10.21776/jdess.2024.03.1.4
Karlina Berlian. (2017). 335-765-1-PB_2. JurnalEkonomiadanManajemen.
Little, T. D. (n.d.). The Oxford Handbook of Quantitative Methods, Vol. 2: Statistical Analysis.
Mujahid, W., & Arif Tiro, M. (2022). PEMODELAN LAJU INFLASI DENGAN MENGGUNAKAN REGRESI NON-LINEAR BERBASIS ALGORITMA GENETIKA (Kasus: Kota-Kota di Pulau Jawa). VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(1), 20–29. https://doi.org/10.35580/variansiunm7
Noor, H. S., & Komala, C. (2019). Analisis Indeks Harga Konsumen (IHK) Menurut Kelompok Pengeluaran Nasional Tahun 2018. Jurnal Perspektif, 3(2), 110. https://doi.org/10.15575/jp.v3i2.48
Purba, W., Nainggolan, P., & Panjaitan, P. D. (2022). Analisis Pengaruh Inflasi dan Pertumbuhan Ekonomi Terhadap Pengangguran di Provinsi Sumatera Utara. Jurnal Ekuilnomi, 4(1), 62–74. https://doi.org/10.36985/ekuilnomi.v4i1.336
Sekarsari, D., Az Zahra, F. A., Ayuningtyas, F. R., & Fadilla, A. (2024). Analisis Dinamika Inflasi dan Implikasinya terhadap Stabilitas Ekonomi di Indonesia. Journal of Macroeconomics and Social Development, 1(3), 1–9. https://doi.org/10.47134/jmsd.v1i3.194
Simarmata, R. T., & Ispriyanti, D. (2011). PENANGANAN OVERDISPERSI PADA MODEL REGRESI POISSON MENGGUNAKAN MODEL REGRESI BINOMIAL NEGATIF. MEDIA STATISTIKA, 4(2). https://doi.org/10.14710/medstat.4.2.95-104
Wagenmakers, E.-J., Farrell, S., & Wagenmakers, -J. (2004). AIC model selection using Akaike weights.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Ekonomi, Bisnis dan Manajemen
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.