Analisis Variabel Kemiskinan di Indonesia dengan Model Linear Regresi dan Algoritma K-Means pada Tahun 2020-2023
DOI:
https://doi.org/10.58192/profit.v4i2.3077Keywords:
Clustering, GRDP, Poverty, Regression, UnemploymentAbstract
Poverty is one of the global issues faced by many developing countries, including Indonesia. This study aims to analyze the factors influencing poverty in Indonesia and to map provinces based on their poverty levels. The data used in this study is panel data from 34 provinces in Indonesia for the period 2020–2023, sourced from the Central Bureau of Statistics. The analytical method employed is multiple linear regression using panel data to determine the impact of gross regional domestic product (GRDP), unemployment rate, and Gini ratio on poverty levels. Furthermore, the K-Means algorithm is applied to cluster provinces based on poverty levels and the variables influencing poverty. The analysis is conducted using Knime Analytics and STATA software. The findings indicate that the unemployment rate and Gini ratio have a significant impact on poverty, whereas GRDP does not significantly affect poverty levels. Based on the clustering results of poverty levels across Indonesian provinces, Papua, West Papua, and East Nusa Tenggara fall into the highest poverty level cluster.
References
Amalia, L., & Samputra, P. L. (2020). Strategi ketahanan ekonomi keluarga miskin penerima dana bantuan sosial di Kelurahan Tanah Tinggi Jakarta Pusat. Jurnal Sosio Konsepsia, 9(2), 113-131. https://www.academia.edu/download/108705116/pdf.pdf
Arifin. (2019). Analisis faktor-faktor yang mempengaruhi kemiskinan di Indonesia. Jurnal Administrasi Publik dan Bisnis, 1(2). http://ejournal.stia-lk-dumai.ac.id/index.php/japabis
Badan Pusat Statistik (BPS). (2021). Statistik kemiskinan di Indonesia 2021. https://www.bps.go.id
Badan Pusat Statistik (BPS). (2023). Profil kemiskinan di Indonesia 2023. https://www.bps.go.id
Bahauddin, A., Fatmawati, A., & Sari, F. P. (2021). Analisis clustering provinsi di Indonesia berdasarkan tingkat kemiskinan menggunakan algoritma K-Means. Jurnal Data Science Indonesia.
Bank, W. (2020). Poverty and shared prosperity 2020: Reversals of fortune. https://www.worldbank.org
Diyah, S., & Adawiyah, E. (2020). Khidmat sosial. Journal of Social Work and Social Service, 1(1).
Ferezagia, V. (2018). Issue 1 Article 1 Recommended Citation Recommended Citation Ferezagia. Jurnal Sosial Humaniora Terapan, 1(1).
Ginting, N. H. (2022, Januari). Analisis hubungan tingkat pendidikan dengan perilaku konsumsi rumah tangga masyarakat Indonesia. Journal of Innovation Research and Knowledge, 1(8), 527-532. https://doi.org/10.53625/jirk.v1i8.1077
Khalif, A., Nur Hasanah, A., Hafizh Ridwan, M., & Nurina Sari, B. (2024). Klasterisasi tingkat kemiskinan di Indonesia menggunakan algoritma K-Means. Generation Journal, 8(1).
Maulidiah, R., Muchtar, M., Aisyah Fitri, N., Asriani, I., & Putri Yasmine, M. (2023). Pengelompokan data pertumbuhan dan kontribusi ekonomi Indonesia menurut provinsi menggunakan metode K-Means clustering. Jurnal Sistem Komputer, 7(3), 436–444. https://ojs.trigunadharma.ac.id/index.php/jsk/index
Nasution, I., Windarto, A. P., & Fauzan, M. (2020). Penerapan algoritma K-Means dalam pengelompokan data penduduk miskin menurut provinsi. Technology and Science (BITS), 2(2), 76–83. https://www.bps.go.id
Nurcahya, W. A., Arisanti, N. P., & Hanandhika, A. N. (2024). Penerapan uji asumsi klasik untuk mendeteksi kesalahan pada data sebagai upaya menghindari pelanggaran pada asumsi klasik. Jurnal Statistik Indonesia, 1, 1–10. https://doi.org/10.5281/zenodo.104492725
Safitri, P. N., Aristawidya, R., & Faradilla, S. B. (2021). Klasterisasi faktor-faktor kemiskinan di Provinsi Jawa Barat menggunakan K-Medoids clustering. Journal of Mathematics Education and Science, 4(2), 75–80. https://doi.org/10.32665/james.v4i2.242
Sukarno Wijaya, N., Jajuli, M., & Dermawan, B. A. (2024). Penerapan algoritma K-Means clustering dalam menentukan daerah prioritas penanganan kemiskinan di wilayah Jawa Timur. Jurnal Mahasiswa Teknik Informatika, 8(4).