Prediksi Persediaan Galon dan Gas Pada Toko Mu’afah Menggunakan Metode Weighted Moving Average

Authors

  • Lailatul Fitria Universitas Muhammadiyah Gresik
  • Nuris Sayyidatul Fatimah Universitas Muhammadiyah Gresik
  • Triyunita Nur Hayati Universitas Muhammadiyah Gresik
  • Soffiana Agustin Universitas Muhammadiyah Gresik

DOI:

https://doi.org/10.58192/profit.v3i3.2171

Keywords:

Gallon, Gas, Weighted Moving Average

Abstract

Indonesian people are very dependent on bottled mineral water resources (gallons) and LPG gas for their daily needs. The dependence on these two resources provides a great opportunity for business people to sell gallons and LPG gas. Mu’afah shop is a basic food store that provides all household needs for daily use, one of the needs sold is gallons and lpg gas. Sales of gallons and lpg gas are erratic in this store, sometimes in a day the sales are very high but it can also be that in a day there is no single sale. This makes the seller unable to ensure the right time to restock goods. This research is qualitative using  the weight moving average  method  with mu’afah shops as research material. Based on the test results using the Weighted Moving Average method, it shows that the method runs well as expected. This can be proven by the calculation of MAD of 1.195 (gallons) and 0.792 (gas), MSE of 0.72 (gallons) and 0.34 (gas), and MAPE of 37.08 (gallons) and 33.2 (gas). So that the accuracy of test results can also be considered quite good.

 

References

Hariguna, T., & Ajiono. (2023). Comparison of Three Time Series Forecasting Methods on Linear Regression, Exponential Smoothing and Weighted Moving Average. International Journal of Informatics and Information Systems, 6(2), 89–102.

Nurfadilah, A., Budi, W., Kurniati, E., & Suhaedi, D. (2022). Penerapan Metode Moving Average untuk Prediksi Indeks Harga Konsumen. … : Jurnal Teori Dan …, 21(1), 19–25.

Nurfadilah, A., Budi, W., Kurniati, E., Suhaedi, D., Studi Matematika, P., Islam Bandung, U., & Pusat Statistik, B. (2022). Penerapan Metode Moving Average untuk Prediksi Indeks Harga Konsumen Application of Moving Average Method for Consumer Price Index Prediction. 21(1).

Prapcoyo, H. (2018). Peramalan Jumlah Mahasiswa Menggunakan Moving Average. Telematika, 15(1), 67. https://doi.org/10.31315/telematika.v15i1.3069

Pratama, D. A., Hidayati, S., Suroso, E., & Sartika, D. (2020). Analisis Peramalan Permintaan dan Pengendalian Persediaan Bahan Baku Pembantu pada Industri Gula (Studi Kasus PT. XYZ Lampung Utara) Analysis Forecasting Dem & Control of Supply Raw Materialsi In The Sugar Industry (Case Study of PT. XYZ North Lampung). Jurnal Penelitian Pertanian Terapan, 20(2), 148–160.

Rahman, L., Melati Sagita, S., & Sulistyniningsih, E. (2022a). RANCANG BANGUN SISTEM APLIKASI PENJUALAN GAS DAN ISI ULANG GALON DI TOKO HD GAS SUKAHATI BOGOR. Jurnal Riset Dan Aplikasi Mahasiswa Informatika (JRAMI), 03.

Rahman, L., Melati Sagita, S., & Sulistyniningsih, E. (2022b). RANCANG BANGUN SISTEM APLIKASI PENJUALAN GAS DAN ISI ULANG GALON DI TOKO HD GAS SUKAHATI BOGOR. Jurnal Riset Dan Aplikasi Mahasiswa Informatika (JRAMI), 03.

Sudarthio, A. T. S., Mulyawan, B., & Haris, D. A. (2020). Aplikasi E-Commerce Berbasis Web Menggunakan Metode Weighted Moving Average Dan K-Medoids. Jurnal Ilmu Komputer Dan Sistem Informasi, 8(1), 31. https://doi.org/10.24912/jiksi.v8i1.11461

Syaputra, A. E. (2023). Akumulasi Metode Monte Carlo dalam Memperkirakan Tingkat Penjualan Keripik Sanjai. Jurnal Informatika Ekonomi Bisnis, 209–216. https://doi.org/10.37034/infeb.v5i1.222

Wulandari, W. (2020). Implementasi Sistem Peramalan Persediaan Barang Menggunakan Metode Moving Average. Jurnal Media Informatika Budidarma, 4(3), 707. https://doi.org/10.30865/mib.v4i3.2199

Published

2024-06-10

How to Cite

Lailatul Fitria, Nuris Sayyidatul Fatimah, Triyunita Nur Hayati, & Soffiana Agustin. (2024). Prediksi Persediaan Galon dan Gas Pada Toko Mu’afah Menggunakan Metode Weighted Moving Average. Profit: Jurnal Manajemen, Bisnis Dan Akuntansi, 3(3), 68–79. https://doi.org/10.58192/profit.v3i3.2171