Tinjauan Penerapan Machine Learning pada Sistem Rekomendasi Menggunakan Model Klasifikasi
DOI:
https://doi.org/10.58192/populer.v3i4.2798Keywords:
Systems, Recommendations, Models, ClassificationAbstract
Technological advancements have brought significant transformations across various fields, including the application of machine learning in recommendation and classification systems. Machine learning leverages data processing, utilizes algorithms, and efficiently identifies patterns to produce accurate recommendations and predictions. This study aims to review machine learning-based recommendation system approaches, analyze model performance, and compare the algorithms used. A literature review was conducted by examining journals published in the past five years, focusing on algorithm implementation. The findings indicate that the Naïve Bayes algorithm delivers the best performance, achieving an accuracy of up to 97%. This algorithm is particularly well-suited for processing small to medium-sized datasets with high efficiency. The research provides comprehensive insights into the performance and limitations of various algorithms, serving as a valuable guide for future developments in the field.
References
Agustian, R., & Nugroho, E. P. (2020). Sistem rekomendasi film menggunakan metode collaborative filtering dan k-nearest neighbors. Jurnal JATIKOM, 3(1). https://ejournal.upi.edu/index.php/JATIKOM
Aisyiah, J., Risnasari, M., & Ni’mah, A. T. (n.d.). Sistem rekomendasi program studi menggunakan metode hybrid recommendation (studi kasus: MAN Sumenep). Journal of Education and Informatics Research, 4(1). https://www.webometrics.info/en/asia/indonesia
Alpaydın, E. (2020). Introduction to machine learning (4th ed.). MIT Press.
Ananto, D. T., Mahardewantoro, D. D., Mustafa, F., Ardianto, M. G., Rafi, M. M., Zein, R. A., Saputra, O. E., Mujiastuti, R., Rosanti, N., & Adharani, Y. (n.d.). Edukasi dan pelatihan pengenalan machine learning dan computer vision untuk mengeksplorasi potensi visual. Prosiding Seminar Nasional LPPM UMJ. http://jurnal.umj.ac.id/index.php/semnaskat
Asfi, M., Fitrianingsih, N., & Pembimbing, D. (2020). Implementasi algoritma Naive Bayes classifier sebagai sistem rekomendasi pembimbing skripsi. Infotekjar, 5(1). https://doi.org/10.30743/infotekjar.v5i1.2536
Dhananjaya, G. M., Goudar, R. H., Kulkarni, A. A., Rathod, V. N., & Hukkeri, G. S. (2024). A digital recommendation system for personalized learning to enhance online education: A review. IEEE Access, 12, 34019–34041. https://doi.org/10.1109/ACCESS.2024.3369901
Diana, R., Warni, H., & Sutabri, T. (2023). Penggunaan teknologi machine learning untuk pelayanan monitoring kegiatan belajar mengajar pada SMK Bina Sriwijaya Palembang. JUTEKIN (Jurnal Teknik Informatika), 11(1). https://doi.org/10.51530/jutekin.v11i1.709
Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., & Kashef, R. (2020). Recommendation systems: Algorithms, challenges, metrics, and business opportunities. Applied Sciences, 10(21), 1–20. https://doi.org/10.3390/app10217748
Gunantohadi, C. C. T. (2022). Review penerapan metode klasifikasi pada sistem rekomendasi sosial kemasyarakatan. Jurnal Teknologi Informasi, 3(2), 1–9.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: Concepts and techniques (3rd ed.). Elsevier.
Hariyanti, D. D., Pradnyana, G. A., & Darmawiguna, I. G. M. (2021). Kombinasi metode Naive Bayes dan K-Medoid dalam memprediksi penjurusan siswa di sekolah menengah atas. Jurnal Ilmu Komputer, 14(2), 88. https://doi.org/10.24843/jik.2021.v14.i02.p03
Natasya, R. D. (2023). Implementasi artificial intelligence (AI) dalam teknologi modern. Jurnal Komputer dan Teknologi Sains (KOMTEKS), 2(1), 1–3.
Ninosari, D., & Fredricka, J. (2022). Sistem pendukung keputusan hasil rekomendasi jurusan perguruan tinggi menggunakan metode Naive Bayes dan AHP. SATIN - Sains dan Teknologi Informasi, 8(1), 106–117. https://doi.org/10.33372/stn.v8i1.834
Pratama, A. R., Aryanto, R. R., & Pratama, A. T. M. (2022). Model klasifikasi calon mahasiswa baru untuk sistem rekomendasi program studi sarjana berbasis machine learning. Jurnal Teknologi Informasi dan Ilmu Komputer, 9(4), 725–734. https://doi.org/10.25126/jtiik.2022934311
Ridwansyah, T., Subartini, B., & Sylviani, S. (2024). Penerapan metode content-based filtering pada sistem rekomendasi. Mathematical Sciences and Applications Journal, 4(2), 70–77. https://doi.org/10.22437/msa.v4i2.32136
Wardhana, R. G., Wang, G., & Sibuea, F. (2023). Penerapan machine learning dalam prediksi tingkat kasus penyakit di Indonesia. Journal of Information System Management (JOISM, 5(1)).
Yanes, N., Mostafa, A. M., Ezz, M., & Almuayqil, S. N. (2020). A machine learning-based recommender system for improving students' learning experiences. IEEE Access, 8, 201218–201235. https://doi.org/10.1109/ACCESS.2020.3036336