Pendekatan Matematika yang Digunakan pada Biologi

Authors

  • Nur Vira Natasya Universitas Mulawarman
  • Nutria Permadani Universitas Mulawarman
  • Ikmawati Ikmawati Universitas Mulawarman
  • Kurniawan Kurniawan Universitas Mulawarman

DOI:

https://doi.org/10.58192/populer.v3i4.2696

Keywords:

Mathematics, biology, modeling, genetics, epidemiology

Abstract

Despite their apparent differences, mathematics and biology are increasingly being used in tandem to model and analyze a wide range of biological processes. This article addresses the use of multiple methods, including population modeling, differential equations, mathematical genetics, and epidemiology, to the study of biology, a field known as biomathematics. Genetic dynamics and the behavior of biological systems, such as population expansion and disease transmission, are understood through mathematical modeling. SIR and SEIR models are used in epidemiology to describe how infectious diseases spread throughout a population. This journal emphasizes the value of mathematical approaches in comprehending intricate biological systems and the necessity of interdisciplinary research between mathematics and biology to address both theoretical and practical issues through a review of the literature. The purpose of this article is to explain the relationship between mathematics and biology and the application of mathematical models in the analysis of biological phenomena. This article uses a literature study writing method by recording research problems, analyzing, and collaborating different thoughts.

References

Afia, S., & Rahmadani, Y. (2023). Model SEIR penyebaran Covid-19 dengan parameter penggunaan masker kesehatan dan vaksinasi. Jurnal Riset Matematika (JRM), 3(1). https://doi.org/10.29313/jrm.v3i1.1731

Afira, R., & Wijaya, R. (2021). Penjadwalan mata pelajaran dengan algoritma genetika (studi kasus di SMK Negeri 1 Padang). Jurnal KomtekInfo, 8(2). https://doi.org/10.35134/komtekinfo.v7i4

Andika, R., & dkk. (2024). Penerapan model eksponensial dan logistik dalam prediksi populasi: Studi kasus Kota Palembang. JITET (Jurnal Informatika dan Teknik Elektro Terapan), 12(2). https://doi.org/10.23960/jitet.v12i2.4005

Aprilia, R., & Panjaitan, D. J. (2022). Pemodelan matematika. Medan: LPPM UMNAW. http://repository.uinsu.ac.id/17581/1/Pemodelan%20Matematika%20Final.pdf

Bermuli, J. E., & Tamba, K. P. (2021). Is project-based tradisciplinary assessment effective in reducing the mathematical anxiety of pre-service biology teachers? Biosfer: Jurnal Pendidikan Biologi, 14(2). https://doi.org/10.21009/biosferjpb.20556

Bormasa, E., & dkk. (2022). Pemodelan penularan penyakit hepatitis menggunakan model SEIR. Amalgamasi: Journal of Mathematics and Applications, 1(2). https://doi.org/10.55098/amalgamasi.v1.i2.pp54-63

Christyanti, R. D., & dkk. (2023). Analisis kestabilan model epidemik SEIR pada penyebaran penyakit menggunakan metode Runge Kutta orde 4. Jurnal Sains dan Bernuanta, 2(1). https://doi.org/10.61323/jsb.v2i1.64

Hakim, R. R. A. (2020). Rancangan bangun media pembelajaran matematika berbasis android pada materi persamaan diferensial. Kontinu: Jurnal Penelitian Didaktik Matematika, 4(2). http://dx.doi.org/10.30659/kontinu.4.2.82-91

Hunter, E., & Kelleher, J. D. (2022). Understanding the assumptions of a SEIR compartmental model using agentization and a complexity hierarchy. Journal of Computational Mathematics and Data Science, 4. https://doi.org/10.1016/j.jcmds.2022.100056

Inayah, N., & dkk. (2020). Model matematika penyebaran penyakit pulmonary tuberculosis dengan penggunaan masker medis. BAREKENG: Jurnal Ilmu Matematika dan Terapan, 14(3). https://doi.org/10.30598/barekengvol14iss3pp459-570

Irwan, & dkk. (2023). Analisis model SEIR (Susceptible, Exposed, Recovered) pada penyebaran penyakit tifus di Kota Makassar. ELIPS: Jurnal Pendidikan Matematika, 4(1). http://journal.unpacti.ac.id/index.php/ELIPS

Nafisah, Z., & Adi, Y. A. (2024). Model SEIR pseudo-recovery pada kasus tuberkulosis di Jawa Barat. Jurnal Matematika UNAND, 13(3). https://jmua.fmipa.unand.ac.id/index.php/jmua/article/viewFile/1243/745

Ningsih, D. K., & dkk. (2016). Analisis bifurkasi pada model epidemiologi SEIR demam berdarah di Surabaya. JURNAL SAINS DAN SENI ITS, 5(1). https://doi.org/10.12962/j23373520.v5i1.15891

Sa’diah, A., & Prihantini. (2024). Implementasi algoritma genetika untuk estimasi parameter model matematika SEIR. Journal of Mathematics Education and Science, 7(1). https://doi.org/10.32665/james.v7i1.1940

Sari, M., & Asmendri. (2020). Penelitian kepustakawan (library research) dalam penelitian pendidikan IPA. NATURAL SCIENCE: Jurnal Penelitian Bidang IPA dan Pendidikan IPA, 6(1). https://doi.org/10.15548/nsc.v6i1.1555

Wibisono, F. J., & dkk. (2021). Pemodelan epidemiologi kejadian multidrug resistance bakteri Escherichia coli pada peternakan ayam komersial di Kabupaten Blitar. Jurnal Sain Veteriner, 39(3). https://doi.org/10.22146/jsv.52071

Zahir, L. A. (2022). Algoritma genetika sebagai solusi permasalahan persamaan linear matematika. Journal of Research in Science and Mathematics Education (J-RSME), 1(2). https://doi.org/10.56855/jrsme.v1i2.62

Zebua, T. G. (2021). Teori motivasi Abraham H. Maslow dan implikasinya dalam kegiatan belajar matematika. Range: Jurnal Pendidikan Matematika, 3(1). https://doi.org/10.32938/jpm.v3i1.1185

Downloads

Published

2024-12-03

How to Cite

Nur Vira Natasya, Nutria Permadani, Ikmawati Ikmawati, & Kurniawan Kurniawan. (2024). Pendekatan Matematika yang Digunakan pada Biologi. Populer: Jurnal Penelitian Mahasiswa, 3(4), 73–84. https://doi.org/10.58192/populer.v3i4.2696