Klasifikasi Batik Parang Menggunakan Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.58192/populer.v3i1.1666Keywords:
Batik Parang, Convolutional Neural Network, Deep Learning, Image, ClassificationAbstract
Batik culture is very strong in Indonesia, this is the reason that batik can be found throughout the archipelago, with unique characteristics that distinguish it in each region. However, people are often confused and find it difficult to recognize one type of batik from another. One of the famous types of batik motif is Batik Parang. This research aims to establish a Convolutional Neural Network (CNN) model to classify Batik Parang and help people distinguish it from other batik motifs. Deep learning, particularly CNN, was chosen because it has a high accuracy rate in image classification. A quantitative Experimental design is used, using a dataset of 100 batik images evenly divided into two classes, namely Batik Parang and not Batik Parang. The dataset is divided into two categories, namely training data and testing data, with a data ratio of 80:20. Thus, by using Convolutional Neural Network (CNN), the classification between Batik Parang and not Batik Parang produces an accuracy of 95%, with the use of epoch = 118 and batch_size = 100.
References
R. Fadiyah Alya and M. Wibowo, “Classification of Batik Motif Using Transfer Learning On Convolutional Neural Network (Cnn),” Vol. 4, No. 1, Pp. 161–170, 2023, Doi: 10.20884/1.Jutif.2023.4.1.564.
H. Fonda, Y. Irawan, A. Febriani, S. Informatika, And H. T. Pekanbaru, “Klasifikasi Batik Riau Dengan Menggunakan Convolutional Neural Networks (Cnn) 1 2 3 Email : 1 2 3,” 2020. [Online]. Available: Http://Jik.Htp.Ac.Id
K. Azmi, S. Defit, And U. Putra Indonesia Yptk Padang Jl Raya Lubuk Begalung-Padang-Sumatera Barat, “Implementasi Convolutional Neural Network (Cnn) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Vol. 16, No. 1, P. 2023.
S. Febrian Tumewu, “Klasifikasi Motif Batik Menggunakan Metode Deep Convolutional Neural Network Dengan Data Augmentation.”
M. T. Kanugroho, M. A. Rahman, And R. C. Wihandika, “Klasifikasi Batik Dengan Ekstraksi Fitur Tekstur Local Binary Pattern Dan Metode K-Nearest Neighbor,” 2022. [Online]. Available: Http://J-Ptiik.Ub.Ac.Id
R. Mawan And H. Al Fatta, “Pengaruh Dimensi Gambar Pada Klasifikasi Motif Batik Menggunakan Convolutional Neural Network,” Jurnal Teknologi Informasi, Vol. 4, No. 2, 2020, [Online]. Available: Https://Fasnina.Com,
R. W. Safira Putri Wulandari, “Penggunaan Machine Learning Untuk Pengenalan Pola Batik Parang Menggunakan Pca (Principal Component Analysis)”.
L. A. Andika, H. Pratiwi, And S. S. Handajani, “Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum *,” 2019.
F. Rizal, A. Wijaya, And U. R. Hidayat, “Penerapan Algoritma Backpropagation Untuk Klasifikasi Jenis Buah Rambutan Berdasarkan Fitur Tekstur Daun,” 2020.
N. P. Ningsih, E. Suryadi, L. Darmawan Bakti, And B. Imran, “Klasifikasi Penyakit Early Blight Dan Late Blight Pada Tanaman Tomat Berdasarkan Citra Daun Menggunakan Metode Cnn Berbasis Website,” Jurnal Kecerdasan Buatan Dan Teknologi Informasi (Jkbti), Vol. 1, No. 3, Pp. 27–35, 2022.
D. Hananta Firdaus, B. Imran, L. Darmawan Bakti, And E. Suryadi, “Klasifikasi Penyakit Katarak Pada Mata Menggunakan Metode Convolutional Neural Network (Cnn) Berbasis Web,” Jurnal Kecerdasan Buatan Dan Teknologi Informasi (Jkbti), Vol. 1, No. 3, Pp. 18–26, 2022.